SOLID Principles in JavaScript

SOLID Principles in JavaScript

Featured on Hashnode

The SOLID principles are software design principles that help us understand how we can structure our code to be robust, maintainable, and flexible as much as possible.

Here come the S.O.L.I.D. principles:


S - Single Responsibility Principle

Alt Text

Any function must be responsible for doing only ONE thing. Only one potential change in the software’s specification should be able to affect the specification of the class.

Example: Let's say we want to validate a form, then create a user in a DB

NO

/* A function with such a name is a symptom of ignoring the Single Responsibility Principle
*  Validation and Specific implementation of the user creation is strongly coupled.
*  That's not good
*/ 
validateAndCreatePostgresUser = (name, password, email) => {   

  //Call an external function to validate the user form
  const isFormValid = testForm(name, password, email); 

  //Form is Valid
  if(isFormValid){
    CreateUser(name, password, email) //Specific implementation of the user creation!
  }
}

YES

//Only Validate
validateRequest = (req) => {

  //Call an external function to validate the user form
  const isFormValid = testForm(name, password, email); 

  //Form is Valid
  if(isFormValid){
    createUser(req); // implemented in another function/module 
  }
}

//Only Create User in the Database
createUser = (req) => CreateUser(req.name, req.password, req.email)

/*A further step is to declarel this function in another file
* and import it into this one.
*/

This seems a pretty little change, but decouples the logic of validation from the user creation, which could change in the future, for many reasons!


O - Open-Closed Principle

Alt Text

Software systems must be allowed to change their behavior by adding new code rather than changing the existing code.

Open for extension, but Closed to modification

If we have something like this:

const roles = ["ADMIN", "USER"]
checkRole = (user) => {
  if(roles.includes(user.role)){
    return true; 
  }else{
    return false
  }
}

//Test role
checkRole("ADMIN"); //true
checkRole("Foo"); //false

If we want to add a superuser, and for any reason, instead of modifying the existing code (or maybe we can't change it), we could do it in another function.

//UNTOUCHABLE CODE!!!
const roles = ["ADMIN", "USER"]
checkRole = (user) => {
  if(roles.includes(user.role)){
    return true; 
  }else{
    return false
  }
}
//UNTOUCHABLE CODE!!!

//We can define a function to add a new role with this function
addRole(role){
  roles.push(role)
}

//Call the function with the new role to add to the existing ones
addRole("SUPERUSER");

//Test role
checkRole("ADMIN"); //true
checkRole("Foo"); //false
checkRole("SUPERUSER"); //true

L - Liskov Substitution Principle

Alt Text

Build software systems from interchangeable parts.

Objects in a program should be replaceable with instances of their subtypes without altering the correctness of that program.

class Job {
  constructor(customer) {
    this.customer = customer;
    this.calculateFee = function () {
      console.log("calculate price"); //Add price logic
    };
  }
  Simple(customer) {
    this.calculateFee(customer);
  }
  Pro(customer) {
    this.calculateFee(customer);
    console.log("Add pro services"); //additional functionalities
  }
}



const a = new Job("Francesco");
a.Simple(); 
//Output:
//calculate price


a.Pro();
//Output: 
//calculate price 
//Add pro services...

I - Interface Segregation Principle

Alt Text

Many client-specific interfaces are better than one general-purpose interface.

We don't have interfaces in Javascript, but let's see this example

NO

//Validate in any case
class User {
  constructor(username, password) {
    this.username = username;
    this.password = password;
    this.initiateUser();
  }
  initiateUser() {
    this.username = this.username;
    this.validateUser()
  }

  validateUser = (user, pass) => {
    console.log("validating..."); //insert validation logic here!
  }
}
const user = new User("Francesco", "123456");
console.log(user);
// validating...
// User {
//   validateUser: [Function: validateUser],
//   username: 'Francesco',
//   password: '123456'
// }

YES

//ISP: Validate only if it is necessary
class UserISP {
  constructor(username, password, validate) {
    this.username = username;
    this.password = password;
    this.validate = validate;

    if (validate) {
      this.initiateUser(username, password);
    } else {
      console.log("no validation required"); 
    }
  }

  initiateUser() {
    this.validateUser(this.username, this.password);
  }

  validateUser = (username, password) => {
    console.log("validating...");
  }
}

//User with validation required
console.log(new UserISP("Francesco", "123456", true));
// validating...
// UserISP {
//   validateUser: [Function: validateUser],
//   username: 'Francesco',
//   password: '123456',
//   validate: true
// }


//User with no validation required
console.log(new UserISP("guest", "guest", false));
// no validation required
// UserISP {
//   validateUser: [Function: validateUser],
//   username: 'guest',
//   password: 'guest',
//   validate: false
// }

D - Dependency Inversion Principle

Alt Text

Abstractions must not depend on details.

Details must depend on abstractions.

NO

//The Http Request depends on the setState function, which is a detail
http.get("http://address/api/examples", (res) => {
 this.setState({
  key1: res.value1,
  key2: res.value2,
  key3: res.value3
 });
});

YES

//Http request
const httpRequest = (url, setState) => {
 http.get(url, (res) => setState.setValues(res))
};

//State set in another function
const setState = {
 setValues: (res) => {
  this.setState({
    key1: res.value1,
    key2: res.value2,
    key3: res.value3
  })
 }
}

//Http request, state set in a different function
httpRequest("http://address/api/examples", setState);

I want to thank my friend Oleksii Trekhleb for their contribution to this article.

Oleksii is the original author of this legendary GitHub repository github.com/trekhleb/javascript-algorithms


In Conclusion...

The main goal of the SOLID principles is that any software should tolerate change and be easy to understand.

The S.O.L.I.D. principles can be beneficial in writing code:

  • Easy to understand

  • Where things are where they're supposed to be

  • Where classes do what they were intended to do

  • That can be easily adjusted and extended without bugs

  • That separates the abstraction from the implementation

  • That allows to easily swap implementation (Db, Api, frameworks, ...)

  • Easily testable


That's all. If you have any questions, drop a comment below.

Francesco

Did you find this article valuable?

Support Francesco Ciulla by becoming a sponsor. Any amount is appreciated!